HSS302 Big Data and Analysis *17 Final Research Paper

Speaker Recognition in the Transcript
Using Keywords

Sumin Han
(hsm6911@kaist.ac.kr)
GitHub: https://github.com/SuminHan/NLP-SpongeBob

Abstract

Recently, many major IT companies are competing with each other to make a better voice recognition
device [1]. However, the devices that are currently on the market do not provide personalized service
for the multiple users due to the difficulty of the realization of the speaker recognizer. In fact, the
speaker recognition can be implemented with the help of accurate sound sensors and machine-
learning techniques, but it requires extra hardware and software which slows down the whole system
with some security issues. So, | wanted to research about the simple way to detect the speaker by
looking at the text itself. Since different people may speak different words, they may use specific
words more frequently which make them distinguishable. | set a hypothesis that each speaker has their
own keywords in his sentence. However, it was not easy to test with the real spoken data on the web,
since | couldn’t get the spoken data with the information about the speakers' personalities and
backgrounds. On the other hand, the transcript of the animation, which is also a type of a spoken
corpus, was attractive for my research, because the characters have strong personalities to make the
story more intriguing. So, | decided to use the transcript of “SpongeBob SquarePants”, which is one
of the popular cartoon animation in the United States. | used AntConc, the corpus analyzation tool, to
filter out the keywords for each character from the transcript. | used the metric called “log-likelihood”
that to calculate the keyness of each word. | also wanted to categorize the keywords into Part-of-
Speech, however, this approach failed with the malfunction of the POS tagger while interpreting the
spoken corpus. But, | succeeded to filter the keywords ignoring the POS with the reasonable
results. Finally, I successfully built the speaker recognizer that works for each sentence and | qualified

it with the original transcript data. Although my research has a clear limitation that it is only tested

https://github.com/SuminHan/NLP-SpongeBob

HSS302 Big Data and Analysis *17 Final Research Paper

with the fictional data, | hope that it suggests a new approach for detection of the speaker in the real

world conversation, which recent voice recognizing device may need to apply.

Author Keywords: Speaker recognition; Log-likelihood keyness

1. Introduction

Modularized Services

* Features
* Easy-to-build blocks for commercial conversational systems
* Simple APIs

IfFAPI Out-API

- NLP '::‘np s
9 Client Application '))

n-ap1 [) out-apI
5:ee¢:h STT -@ e.g., Watson STT, Google Cloud speech API,
(text)

i

(wav) (speech-to-text) | Microsoft Bing Speech API
—— o/
in-apl \ out-api

— NLP = e.g., Watson NLC, MS LUIS
"::‘::tr)'p (natural lang. (enum) |
processing) |

———

—
In-API Out-API . .
—_— Response -@ e.g., Watson Dialog, Watson Conversation

(text)

[} i

{enum) Generation |
| —
)
In-API Out-API ;
—— s e e.g., Watson TTS, Bing speech APls
[text) (text-to-speech) | __(wav)
N —
in-Apl | Out-API

Etc.

IBM
Research

Figure 1. Pipeline of the commercial conversational system. (Reference: IBM Research [3])

: e.g., external data (weather, map); emotion/tone analysis, etc.

|

Speaker recognition is defined as the identification of a person using the characteristics of voices. It is
sometimes confused with the term “speech recognition”, meaning the conversion from sound to text
[2]. Basically, the commercial conversational systems are composed of modularized services in the
pipeline: Speech-to-text, Natural Language Processing, Response Generation, and Text-to-Speech

(Figure 1) [3]. The primary approach to recognize the speaker is to embed a new software in the

HSS302 Big Data and Analysis *17 Final Research Paper

speech-to-text phase detecting the real human voice. However, this approach requires sensitive voice
sensors and machine-learning techniques to train the software using the user’s voice, which makes the
performance of the speech-to-text module significantly slow. Also it causes several security problems,
because this system saves all the voice records for training data. To solve these problems, | propose a

new approach to detect the speaker during the response generation phase: the keyword detection.

In the process of data collection, however, it was not easy to deal with the spoken corpus in the real
world. First, 1 have no information about the speakers’ personalities and backgrounds for the spoken
corpus that I can get from the internet. Moreover, gathering the spoken data by myself was also
difficult because of language problem and its reliability. Instead, the transcript of a cartoon animation
looked attractive because we already know about the characters’ personalities and backgrounds in the
story. This type of data was suitable for my research to test my speaker recognizer module. So, |
decided to use the transcript of “SpongeBob SquarePants”, one of the popular cartoon animation in
the United States. There are some reasons that | particularly chose SpongeBob for my research. First,
the characters from the SpongeBob have strong personalities so that | can match the keyword result
with my expectation to evaluate my method. Second, SpongeBob is long-run cartoon animation that
has more than 10 seasons with 500 episodes with several movies so there are massive data. Third,
since there are a lot of episodes, the keywords that each character speak is independent on the topic of
the conversation. So, we can simulate the real world situation by testing the conversation of the

characters with many topics and situations.

In this research, | used Beautiful Soup and NLTK package in the Python to crawl the data from the
web. With the help of a well-organized web page that stores all the transcript from the SpongeBob
episodes [4], | could gather about 538 files (2.94MB) for my research. Then | used AntConc, the
freeware corpus analysis tool, to filter out the keywords. | referred to a Youtube video [5] to use this
functionality, but later I found out AntConc uses the metric called ‘log-likelihood keyness’ calculated

by using a well-defined formula that | will introduce later. After that, | made a web service that the

HSS302 Big Data and Analysis *17 Final Research Paper

robot that answers the correct speaker for the inputted sentence so that people can test my program

interactively. Finally, | tested with the original transcript to evaluate my speaker detection module.

2. Challenges and Key Approach

The key challenge for filtering out the keywords is the numeration of the keyness. In this research, |
decided to use the metric called “log-likelihood keyness”. The formula of the algorithm is written as

below [6][7].

function Log-Likelihood (a: Frequency of word in the speaker’s corpus, b: Frequency of

word in the whole corpus, ¢: Corpus size of the speaker, d: Total corpus size [tokens])

| El=c*(at+h)/(c+d)

| E2=d*(atb)/ (ct+d)

| return 2*((a*In (a/EL)) + (b*In (b/E2)))

end function
The function determines the keyness of a word considering both the relative frequency and the size of
the whole corpus. Then it takes the logarithm to soothe the proportional part. In this way, we can also
compute the relative keyness among the keywords that filtered out for one character and rank their

importance.

Also, | wanted to categorize the keywords into the Part-of-Speech tags (e.g. nouns, pronouns, verbs,
adverbs, adjectives). | tried with both TagAnt and NLTK pos tagger for this research, however, both
of them did not work well with the spoken corpus. These taggers only worked well with the finely
structured sentence, and they confused many imperative sentence and interjections as nouns.
Although this approach to categorizing the keywords into POS failed, | still could successfully use the

keywords that calculated from the AntConc, without considering the POS.

HSS302 Big Data and Analysis *17 Final Research Paper

The resulting keyness for each word using this log-likelihood approach was used for my speaker
recognizer design. Since each keyword shows different importance by their numbers, | thought this
can be used for the scoring system. For example, if the keyness of the word “formula” is 20.0 for
Plankton and 10.0 for Mr. Krabs, this word is more likely to be used by Plankton. However, if the
keyness of the word “money” is 10.0 for plankton and 100.0 for Mr. Krabs, the sentence that both
includes “formula” and “money” each once results in 30.0 for Plankton and 110.0 for Mr. Krabs for
the total. So this sentence is more likely to be said by Mr. Krabs rather than Plankton. By using this
property, | could design the speaker recognizer that outputs the result with input sentence, and

evaluated with the original transcript to check its average correct answers.

3. Data Collection

For the data collection, | used a well-organized web page which stores the list of the transcripts from
SpongeBob and crawled the data. | used Python and Beautiful Soup [8] to download and categorize
into each speaker. In this section, | will show how I could crawl all the transcript data in more detailed

level.

3.1. Crawling the Transcript List

The web page shows the list of the transcripts [4]. When you look into the code, these tables contains

the URL address to each transcript page.

HSS302 Big Data and Analysis *17 Final Research Paper

 article: List of transcripts/season 1

1a Help Wanted View transcript
I 1 Reef Blower View transcript
| 1c |Tea at the Treedome View transcript
! Z2a Bubblestand View transcript
| 2b Ripped Pants View transcript
Ja Jellyfishing View transcript

Figure 2. The list of the transcripts

. . /sca50n

Figure 3. The main table with “wikitable” class

¥itable class="wikitahle" style="width: &98px;">
¥ cthody>
B4 o R o
¥ <>
P tdra<ftde
¥otd style="text-align:left™:
<@ href="/uiki/Help Wanted"” title="Help Wanted":>Help
Wanted</fax
£/td>»
¥otd»
¥ <center:

Wanted (transcript)”:View transcript:</
</ center>
£ftd>
itr:
P trrocftre
P <trroftre
P <trra<ftre

Figure 4. The HTML code that directs the link

HSS302 Big Data and Analysis *17 Final Research Paper

I first downloaded this HTML file containing the list of transcripts and extracted the table elements
using Beautiful Soup. The tables had “wikitable” class, so Beautiful Soup could extract only this type
of table elements. Each row of the table contains the episode number, title, and URL to view the
transcript. The transcript URL is saved as “href” information in the “a” tag in the HTML, so |
extracted this information and made the list of the links to download the transcript data later. | made a
new text file to arrange the list information. There were 538 files. Refer to the source code

“ListCrawling.py” in “data/crawling_code”.

http:ffspangebab.wikia.cad
Help Wanted /wiki/Help Wanted (transcript)
Reef Blower /wiki/Reef Blower (transcript)

S R T o I

Tea at the Treedome /wiki/Tea at the Treedome (transcript)
Bubblestand /wiki/Bubblestand (transcript)

Ripped Pants /wiki/Ripped Pants (transcript)
Jellyfishing /wiki/Jellyfishing (transcript)

Plankton! /wiki/Plankton! (transcript)

Lok
e I T RS R R T o Y o

Figure 5. SpongeBob_Script_List.txt (the first line is the reference URL)

3.2. Crawling the Transcript Text

Now, use the arranged list file to download by accessing each URL address. | used urllib2 library in
Python to download the web data. First, we need to make a full URL address by combining the main

address (http://spongebob.wikia.com) with the sub address (/wiki/Help_Wanted_(transcript)). Then

we download the web content using the urllib2 library.
response = urllib2.urlopen(URL + href)

webContent = response.read()

This code downloads the HTML file of the transcript web page.

http://spongebob.wikia.com/

HSS302 Big Data and Analysis *17 Final Research Paper

(o)

This article is a transcript of the SpongeBob SquarePants
episode "Help Wanted" from season one, which aired on
May 1, 1999.

r_1

= [Following the SpongeBob SguarePants theme song,
the brief opening tifles show the names of creator
Stephen Hillenburg, Derek Drymon and others. The
episode opens with a bubble fransition, and we see a
coral reef under the sea. The camera zooms to initiate
parallax scrolling, which reveals the city of Bikini
Botfom. It continues zooming to show a brown rock, a
Moai head, and a pineapple, which each contain
inhabitants]

= French Narrator: Ah, the sea... so fascinating. So
wonderful. Here, we see Bikini Bottom, teeming with
life. [Shows from left to right Patrick’s, Squidward's, and
SpongeBob's houses. Zooms in on SpongeBob's
house] Home to one of my favorite creatures,
SpongeBob SquarePants. Yes, of course he lives in a
pineapple, you silly. [SpongeBob's alarm sounds, he
wakes, but is unaffected by the annoying sound, and
with a smile furns it off. He climbs from his bed to a
ladder leading to his diving board] S i —

= SpongeBob: Today's the big day, Garyl - =~/

= Gary: Meow.

= SpongeBob: [Jumps on the diving board] Look at me, I'm_. [Jumps up, and leaves his underwear behind]
_.naked! [Lands inside pants, walks over to exercise room. His head pops out of the top of his pants] Gotta
be in top physical condition for today, Gary.

Figure 6. The actual transcript page that URL addresses

When you use the developer tools in the Google Chrome, you can check its HTML tag that has id

“mw-content-text”. | used this information to extract this part using Beautiful Soup.

Figure 7. div element with id “mw-content-text”

HSS302 Big Data and Analysis *17 Final Research Paper

Each sentence has “li” tag contained in the “ul” tagged element, which means each sentence
considered as an element inside unordered list. In the next section, | will explain more detail about
this process together with speaker categorization. Refer to the source code “TranscriptCrawling.py” in

“data/crawling_code”.

3.3. Categorization into Each Speaker

L
b:French Narrator:</b I
" Ah, the sea... so fascimating. 50 wonderful. Here, we see Bikini
Bottom, teeming with 1life. "
[—
¥l
"[Shows from left to right Patrick's, Squidward's, and SpongeBob'g
houses. Zooms in on SpongeBob's house]™
/i
" Home to one of my favorite creatures, SpongeBob SquarePants. Yes,
of course he lives im a pineapple, vou silly. "
¥ <1
"[SpongeBob's alarm sounds; he wakes, but is unaffected by the
annoying sound, and with a smile turns it off. He climbs from his
bed to a ladder leading to his diving board]"
/i
/11
¥li

lib:Spongebob:]
" Today's the big day, Gary!

f11

Figure 8. HTML code for the list of sentences in the transcript

Each sentence is tagged as “li” meaning the list element. The sentence contains the information about
the speaker inside the “b” tag (bold), and the lines. There is “i” tag (italic) which describes the action
or the situation. | used “b” tag to categorize the speaker and write the sentence ignoring the content

inside the “i” tag. (Figure 8)

HSS302 Big Data and Analysis *17 Final Research Paper

for div in page:
ifodiv. f|n|:|
for I|

—_——
I:

.ul.select('li')i
|f W
speaker = v.text
li.b.replace_with(")

while I|
li. replace withi)

content = |i.text

#print speaker
#print content
file,write{speaker + "#t" + content)

Figure 9. Python code for speaker categorization using “b” tag, and “i” tag

Later, we read all the downloaded files and split each sentence with “\t” token (tab character) because
it divides the speaker and the sentence [note this line: file.write(speaker + “\t” + content)]. In this way,
I could successfully categorize the scripts for each character. In this way, | could crawl the script data

about 2.94 MB (2977 KB).

[af spongeBob.txt 2017-04-00 25 Motepad++ Docu... T85KB
[a Mr. Krabs.txt 2017-04-080 2= Motepad++ Docu... 318KE
e Squidward txt 2017-04-09 23%.. Motepad++ Docu 268KB
[Patrick txt 2017-04-09 2= Notepad++ Docu... 218KB
[Plankton.txt 20170409 25 Motepad++ Docu... 151KR
Y sandy txt 2017-04-09 2= Notepad++ Docu... BBKB
[Narrator txt 2017-04-09 2= Notepad++ Docu... 27KB
& Mrs. Puff txt 2017-04-09 2% .. Notepad++ Docu... 26KEB
[ad Patchy txt 2017-04-09 2= . Notepad++ Docu... 25KB
5 Karen txt 2017-04-09 2= Notepad++ Docu.. 19KB
[Pearl txt 2017-04-09 2= MNotepad++ Docu.. 19KB

Figure 10. Categorized files for each speaker

4. Keyword Calculation

In this section, | will describe the way to calculate and rank the keywords using the log-likelihood
keyness. | used AntConc for the primary tool to calculate the keyness. | also tried to categorize the

keywords into POS using Python NLTK package, but it failed since the POS tagger did not work with

10

HSS302 Big Data and Analysis *17 Final Research Paper

the spoken corpus correctly. So, | used the result of the AntConc, which does not actually categorize
into keywords to build the speaker recognizer. It uses the scoring system that gets the value of the

keyness when the word hits in the list.

4.1. Keyness Calculation Using AntConc

W arnCone 344w (Windows) 2014 = ®
File Global Settings Tool Prefarences Help
Corpus Flles: Concordance Concordance ot File View Chusters/N-Grams Colloc m eyword List
o > -
'.J\'\I(onc 3 44w (Windows) 2014 W Word Types: 8777 Word Tokens: 156291 Search Hite: -
Fasik Freg Ward Lemrna Ward Feems) -
File Global Settings Tool Preferences Halp 1 6600 i
¢ Concordance Plot File View Chusters/N-Grams
Open Di- kD |ue o ; ;:;‘; e
i the
Close Sebected Filels) n 3131 1o
Close All Files) 009
5
E:: ::"T' | 5 2875 a
sals [
Clear &1l Toaks and Fikes 7 2837 it
B 2153 |t
Seve to Text File.. Chrle5
Sclpsteo T . 9 |2033 that
Impert Settings from File... 10 1902 land
Export To File—.
g0 FF 11 1855 patrick
Restore Default Settings 12 1550 ‘we
Eit 13 1524 this
14 1401 lis
Search Term [7] Weeds [Case [] Regex Hit Lscation
[Advanced | Search Only [0
Total N St e Sodt Lewnma Lisk Loaded
1
e Sorty [] ert Order
I | (et Fre - e —

Figure 11. Open the script file and find the word frequency.

For the first step, you choose the target speaker’s script and open in the AntConc. Then go to Word

List tab, and calculate the frequency of each word by clicking on the Start button.

A AntConc 3.4.4w (Windows) 2014

. - Category Keyword List Preferences
File Global Settings | Tool Preferences | HYll iconcordance Display Options
Files Clusters/N-Grams ¥ Rark 7] Frequency [¥] keyness (7] Keyword
e Concordance || G ——
ora List
SpongeBob.txt Types Before C 7] Treat al data 25 lowercase

Treat case in sort

Add all scripts

st (for all the

Keyword Generation Method Log-Likelihood - k)
Threshold Value All Values speakers

Show negative keywords (using highlight color) and LOAD

Reference Corpus
@ Use raw file(;

Loaded

e word list(s)

Total No. 1708

Zeus.bd
Zoo Worker Libd
the band bt

[Add Directory | | Add Files | [Swap with Target Files| | Clear List |

o [m| »

Figure 12. Load all the other script files as reference corpus.

11

HSS302 Big Data and Analysis *17 Final Research Paper

Next, load the scripts for all the speakers (including the targeted speaker) and click on load button.

Recall that we need the reference corpus to calculate the log-likelihood keyness that is introduced in

the Section 2.

File Global Settigs Tool Preferences Help

Corpus Files
SpongeBob.txt

Total No.
1
Files Processed

;ConcordancelConcoldance Plot J_File Vlew| CIusterst-Gramsl Collocates | Word List| Keyword List

Types Before Cut_8277 _____Types After Cut. 6147 Search Hits: 0

Rank Freq Keyness Keyword
1855 795406 patrick
806 | 427.468 gary
1259 |1373.531 mr
1341 | 325.186 squidward
1167 | 292.235 krabs
487 | 186.334 sandy
356 | 101.383 la

181 | 86.144 doo
321 ||61.090 sir
1550 | 49.817 we
150 | 48.068 mrs
139 | 44.585 puff
308 | 41366 ready
14 AARNa [|lan nag i

d [» < | » rF 1

[

2
3
4
5
6
7
8
9

e
W M = O

Search Term [V] Words [| Case [| Regex Hit Location
[Advanced J | Search Only | ©

| star | Stop sort Reference Corpus |/ Loaded

Sort by [] Invert Order

Sort by Keyness Clone Results

Figure 13. Calculate the keyness

Finally, go to Keyword List tab and click on the Start button. The result is sorted by the keyness as a

default. You can change the order by clicking on the dropdown button below. When you get the result,

you can save the file by pressing “Ctrl + s” on the keyboard. | did the same process with the scripts of

Gary, Mr. Krabs, Mrs. Puff, Patrick, Plankton, Sandy, SpongeBob, and Squidward who are the main

speakers in the story. | will discuss about the result in the Section 4.3 Evaluation.

4.2. Part-of-Speech Categorization

Although | failed with this approach, | wanted to put this section for other researchers who wants to

deal with the spoken corpus to give them some precautions. In fact, the reason why | did this approach

12

HSS302 Big Data and Analysis *17 Final Research Paper

is that |1 wanted to ignore redundant words other than the nouns, verbs, adverbs, adjectives, which are

not considered to be keywords.

Basically, the key idea to find out the keyword is same with AntConc: using the log-likelihood

keyness. In this case, | made up my own custom function to calculate keyness.

kevness(a, b, c, d):

a = floatia)

b = floatib)

¢ = floatic)

d = floati(d)

Ei = cxla+b) / ([c+d)

EZ = d+{a+b) / (c+d)

ka = [a*math.logia/E13)
kb = (b*math.log{b/E2))

2xlkatkh)

Figure 14. Python code to calculate the keyness

Then we categorize into POS tag. We first categorize and calculate the frequency of the words.

ttypes = [THN™, "HMS', "NMP", "HNPS', "WB', "WBD', 'WBG', 'VBM', "YBP', 'WBZ', "JJ°, 'RB’]

Figure 15. Types of POS tag to extract: [NN: nouns, NNS: plural nouns, NNP: pronoun, NNPS: plural
nouns, VB: normal verb, VBD: verb past tense, VBG: verb gerund or present participle, VBN: verb
past principles, VBP: verb non-3rd person singular present forms, VBZ: verb 3rd person singular
present form, JJ: Adjective, RB: Adverb]

13

HSS302 Big Data and Analysis *17 Final Research Paper

f = open{frname + " .tut”, “r"}:
line f:
line = line.strip()
line:
words = nltk.pos_tag(nltk . word_tokenize(linel)
{w, tag) words:
w o= w. lower(]
W stpwd:
enfw) <= 1:

t ttypes
ta ==
ddlc[fnamE][t] ha
ddlc[fname][t][w
ddic[frname] [t]

? kgy(w)
[w] =

ttwcount [fname] [t],

I8

]

t]. has_
ttwcount [fname] [t] [w]
el [t]]

key(1
+=
D ttwcount[fnam | =

W

ftcount [fname] [t] += 1
ttcount[t] +=1

Figure 16. Do the math for further keyness calculation

However, during this phase, | found that lots of POS tags were turned out to be incorrect. For example,

this is the POS tagging result from Mr. Krabs’ script.

Part-of-Speech Word Frequency

NN Spongebob 105
NNP Spongebob 415
NNP Spongebobs 1
NNP Spongebob-bob-bob-bob-bob-bob-ob 1

VP Spongebob 1
VBP Spongebob 2

JJ spongebob 4

Table 1. Incorrectly tagged word “SpongeBob” in Mr. Krabs’ script

SpongeBob which must be considered as Pronoun was detected as a noun in many times and

sometimes verbs or adjectives. This is because the POS tagger does not work correctly with

14

HSS302 Big Data and Analysis *17 Final Research Paper

imperative sentences that are common in the spoken corpus. For example, “SpongeBob!” is

categorized into the noun, not the pronoun. Also, the script was written informally, so there were

several words that are not in the dictionary. This caused the severe problems in the keyword detection.

1) keyword_result txt - 02 & | keyword_result tet - R
OpiF SEIE J&0) =270 EEH OrelF #EfEE MY 22100
Mr. Krabs NNS

NN customers

money 428.243331949 patties 73.859477693
boy 201.144595309 thanks 40.5035845413
time 182 ,976696378 eyes 32.1646112534
spongebob 136.259241984 | boys 30,9733293551
day 119.389050119 people 29.7820474569
way 105.114272387 kids 28.5907655586
work 999234441213 dollars 285907655586
something 98.6257370548 | things 22.6343560672
ya 76.5647169241 friends 22.6343560672
formula 75.2670098576 pants 21.4430741689
thing 71.3738886581 times 20.2517922707
right 67.4807674586 years 19.0605103724
nothing 67.4807674586 bucks 19.0605103724
lad 66, 1830603921 hours 16,6779465758
business 58.396817993 hands 16.6779465758
job 58.396817993 days 16.6779465758
look 54.5036967935 folks 16.6779465758
course 54.5036967935 minutes 154866646776
anything 545030967935 | boots 14,2953827793
wait 53.2059897269

EE22H

125.084599319

| keyword result txt - 2%
IR PEE M40 22|V) =STH)

NNP

spongebob 715.553146006
squidward 470713274361
krabby 317.25729847

plankton 263.806340576
krusty 253.460993887

mr. 232 .770300508

krab 231.04607606

patty 200.010035992

hey 158628649235

krabs 124.144160271

uh 113.798813582

okay 101.729242444

come 965565690996

huh 94,8323446514
patrick 93,1081202032

pearl 87.9354468586

well 84 4869979622

ah 82.762773514

ooh 62 .0720801355

neptune 60 ,3478556873

Figure 17. The keywords are categorized into each POS,

but many keywords do not actually belong to their group.
[NN: nouns, NNS: plural, NNP: pronoun]

Therefore, | decided not to go over the keyness approach with POS categorization. But still, | could

use the result from AntConc keyness calculation which does not care the POS tag. Refer to the

“taggedrun.py” file and keyword_result.txt in the “data/my_keyword_result” directory.

4.3. Keyword Result Evaluation

First of all, | expected the keywords for each character based on my personal view:

Patrick: buddy, friends, play outside

Mr. Krabs: money, business

15

SpongeBob: Krabby Patty, spatula, jellyfish, bubble blowing, driving license

HSS302 Big Data and Analysis *17 Final Research Paper

e Squidward: clarinet, art
e Plankton: secret, formula, machine, fail
e Sandy: Karate, helmet, science

e Gary: meow

These are the reason why | expected above keywords:

SpongeBob likes his job and he is working at the Krusty Krab. He cooks Krabby Patty with

his lovely spatula. His hobby is catching jellyfish and bubble-blowing, and he always fails to

pass the driving test.

e Patrick likes to play with SpongeBob. In fact, he doesn’t have any job, so he always wants to
hang out with his best friend SpongeBob.

e Mr. Krabsloves money. He is a dreadful penny pincher. He likes to talk about new
businesses.

e Squidward hates his job. His hobby is playing the clarinet or painting and enjoying art.

e Plankton tries to get the secret or formula of Krabby Patty. He invents lots of machines to
supplement his small body, however, he always fails his plan.

e Sandy likes science. She uses helmet under the sea to breath. She is also good at karate.

e Gary is the SpongeBob’s pet and the only word it can say is meow.

The resulting keywords for each speaker from Section 4.1. are listed below. | ignored some of the
Pronouns especially the name of the characters, and interjections (e.g. wow, yeah, oh) to focus on the
character’s own personality, not the relationship with other characters. | added my comment for each

result.

16

HSS302 Big Data and Analysis *17 Final Research Paper

o4 _

19
SpongeBob SquarePants (character) 20
21
22
25
26

34
36

Figure 18. Keywords of SpongeBob

281
210
197
178
406
102
138
63
155

41.366
27.577
25.872
24.558
23.572
20.901
18.692
17.694
13.799
12.487

ready
SOrTy
guess
best
friend
okay
jellyfish
worry
spatula
buddy

As | expected, there are words like jellyfish, spatula. Actually, SpongeBob seems very kind because

he uses the words such as ready, sorry, best friend, okay, buddy. Although it is not listed in the figure,

SpongeBob has many pronoun keywords such as Patrick (rank: 1, frequency: 1855, keyness: 795.406),

Gary (rank: 2, frequency: 806, keyness: 427.468), Mr (rank: 3, frequency: 1259, keyness:

373.531), Squidward (rank: 4, frequency: 1341, keyness: 325.186), krabs (rank: 5, frequency: 1167,

keyness: 292.235), Sandy (rank: 6, frequency: 487, keyness: 186.334). This may show that

SpongeBob is the main character who calls the other characters’ name most frequently in the story.

17

HSS302 Big Data and Analysis *17 Final Research Paper

T A

3 81.819 buddy
8 33 36.387 rock
9 16 32.688 donut
10 30 32.083 glove
13 67 26.959 friend
14 33 25.547 cream
17 10 23.797 ruggie
18 24 23.601 hide
19 14 22415 speech
20 52 22,036 play

Figure 19. Keywords of Patrick

Patrick calls his best friend SpongeBob all the time by saying the word ‘buddy’. Also, he lives under
the hemisphere rock. He likes to play with SpongeBob. But, it seems that he doesn’t have strong
keywords that distinguish him. In fact, there were many interjections such like yeah (rank: 2,
frequency: 290, keyness: 142.345), hey (rank: 3, frequency: 333, keyness: 119.861), oh (rank: 7,

frequency: 533, keyness: 63.824). In this aspect, Patrick is a very emotional character.

" “Rask | Frequeacy | Keymess | Word

| 354 467.163 money

2 408 338.615 boy

3 1027 226.042 me

4 90 149.547 lad(& =°l)
5 105 115.565 customers
6 162 84.869 ya

7 78 68.870 boys

10 138 42.642 patties

11 44 39.369 dollar

13 80 37.533 free

Figure 20. Keywords of Mr. Krabs

18

HSS302 Big Data and Analysis *17 Final Research Paper

As | expected, Mr. Krabs talks about money (dollar) and the customers in his restaurant which sells

the Krabby patties. Also, he is older than others and calls other characters especially SpongeBob as

boy or lad.

13
14

Figure 21. Keywords of Squidward

174
748
45
5
23
26
42
43
30

94.085
75.149
57.677
45.993
43.834
39.927
37.625
35.634
31.021
30.996

m

two
what
art
clarinet
morons
squilliam
whatever
stupid
quiet

Squidward is a very cynical person. He really hates SpongeBob and says “no” for all the suggestions.

He frequently indicates both SpongeBob and Patrick as “two” of you. His hobbies are enjoying art

and playing the clarinet. He thinks SpongeBob and Patrick are morons and stupid. He wants to be in a

quiet place because SpongeBob always makes noises.

_

g%
L=l B Y R

10
11
12

Figure 22. Keywords of Plankton

19

98
102
50
26
47
36
122
33
34

341.692
172.930
130.935
82.089
59.169
56.949
55.701
SO
52922
51.706

formula
chum
secret
bucket
wife
mine
plan
patty
recipe
steal

HSS302 Big Data and Analysis *17 Final Research Paper

Plankton tries to steal the secret formula to make Krabby Patties and makes a plan. Also, he is the

only one who has a wife. The keywords reflect his personality clearly.

10
14
15
16
18
20

Figure 23. Keywords of Sandy

28
27
17
13
16
12
14
8
11

?4 906
56.301
56.189
56.160
51.327
45.009
43.866
36.561
31.115
29.212

critter
karate
air
rodeo
critters
nuts
experiment
science
tarnation

helmet

Sandy is curious about other critters. She is also good at karate and sometimes teaches SpongeBob.

She eats nuts, as she’s a squirrel. She conducts many experiments to find new scientific discovery.

She uses her helmet to breath in the ocean.

<

Gary the Snail

00 ~1 O L & W

Figure 24. Keywords of Gary

20

521
4
3

R

[SS TR S T S

5156911

40.943
30.707
29.467
28.446
20.471
20.471
20.471

meow
mMooowWwWw
reow
mah
meoooow
meowow
MOo00OWWW

mrloooow

HSS302 Big Data and Analysis *17 Final Research Paper

Gary only speaks meow, and he’s the only one who speaks this word. The word “meow” shows very

strong keyness.

4.4. Speaker Recognizer Design

I used the resulting keyness value in Section 4.1. for the speaker recognizer design. For each speaker,
we can get the keyness for each word. So, if we want to test the new sentence, we can tokenize the
sentence into words and compare the sum of the keyness of each word for each speaker. For example,
suppose that the word “hello” have keyness value 30 for speaker A and 20 for speaker B, and “world”
have keyness value 40 for speaker A and 60 for speaker B, then the sentence “hello world” output the
value 70 for speaker A and 80 for speaker B by summation. Therefore, this sentence is more likely
said by speaker B. Based on this idea, | designed the speaker recognizer. But | ignored the character’s
name and stop words (e.g. I, me, you, can, about, after, get) [9], which is defined in the NLTK
package, because it should not be considered as one’s keyword. Here is the sample result for the input

sentence. Refer to the score_app.py file in the “data/antconc_keyword_result” directory.

Stopword list

a been get
about before gettin
after being go
again between goes
ags but gaing
all by gone
almost came got

also can gott
am cannot ha
an come has
could

Figure 25. List of the stopwords

.- 1 can’t give you the formula, even though you give me money.

[, “ca’, “n’t”, ‘give’, ‘you’, ‘the’, “formula’, “,’, ‘even’, ‘though’, ‘you’, ‘give’, ‘me’, ‘money’, *.’]

21

HSS302 Big Data and Analysis *17 Final Research Paper

why? gary 0

why? mr. krabs 490.368
why? mrs. puff 2.45
why? narrator 0.647
why? patrick 3.181
why? plankton 344.606
why? sandy 0

why? spongebob 0.222
why? squidward 27.356

mr. krabs 490.368

Later, | created my own web server that guesses the speaker so that users can test my program
interactively. | used Node.js [10], a simple web server technology, to connect my speaker recognizer
module and made a simple web application. | will discuss the reliability of this system in the next

section. Refer “data/myapp” for further information about Node.js server and internal system.

'Course it is! Money makes the world go round, and makes me heart go pound.

>>> mr. krabs

spongebob: 12.229 | patrick: 5.786 | gary: 0 | mr. krabs: 472.031 | plankton: 0.939 | mrs, puff:

Type Text: | ISubmit

Figure 26. Speaker detector web application with Akinator’s image

22

HSS302 Big Data and Analysis *17 Final Research Paper

4.5. Speaker Recognizer Evaluation

Character Correct Total Percentage
SpongeBob 3150 13348 23.60 %
Patrick 2421 5206 46.50 %
Mr. Krabs 2168 4812 45.05 %
Squidward 1416 4796 29.52 %
Plankton 848 2164 39.19 %
Sandy 517 1403 36.85 %
Gary 415 420 98.81 %

Table 2. Speaker Recognizer Testing Result
(average: 10935/ 32149 = 34.01 %)

I conducted the testing with the original transcript data sentence by sentence. For example, 3150
sentences out of 13348 sentences for SpongeBob turned out to be correct with 23.60 % of correction
rate. In this testing process, if a sentence got no score, then | skipped that sentence. This testing
module also ignores names (e.g. SpongeBob, Patrick, Krusty Krabs) and stop words. The result is

listed below.

First of all, Gary got the highest score, 98.81 %. This is because he is the only one who speaks “meow”
sound. However, there was an episode that SpongeBob go into Gary’s dream and Gary spoke English

fluently. That resulted in the little incorrectness.

For Patrick, Mr. Krabs, Plankton, and Sandy, they showed the quite good correction rate around 40 %.

That is because they have strong personalities and has their own keywords. Patrick speaks lots of

23

HSS302 Big Data and Analysis *17 Final Research Paper

interjections, Mr. Krabs talks about business and money-related words, Plankton speaks a lot about

his plan to steal the Krabby Patties secret, and Sandy is the only land animal that lives in the ocean.

Squidward showed about 30 % correction rate, which is lower than the above group. Squidward has
his own hobby like making art and playing clarinet, but he is not the main story maker in many
episodes. He is more like an indispensable character that makes the SpongeBob’s action remarkable.

So, he has slightly lower value.

Finally, SpongeBob got the lowest score 23.60 %. In fact, the major reason is that he speaks a lot
more than any other characters. Note that the number of total sentences of his script is 13348. The
second is Patrick and he spoke 5206 sentences. As SpongeBob is the main character, he has to speak
the words that are also related to his opponent. For example, if Mr. Krabs teaches SpongeBob how to
deal with money, SpongeBob may also speak about money. If Patrick asks SpongeBob to go out to
play, SpongeBob may also say the similar interjections as Patrick does. So, he gets the lowest

characteristics among the other characters, which resulted in the lowest score.

5. Discussion

The biggest question about my research is that is this approach can really be applied to the real
devices on sales. Although exceptionally my speaker recognizer could detect Gary perfectly for about
99 %, this is because he is a pet. Generally, the average correction rate was 34 % and this number

seems low if we target to support multiple users in the general situation.

However, we don’t have to care too much about 56 % of incorrect answers. Those sentences that my
module failed to recognize are the more likely the sentence with general words like “bring me water”,
“where is the nearest restaurant?”. In these cases, we don’t need to provide customized service for
each user. But still, I admit one of the biggest disadvantages of my approach is that my module can

not support instant voice detection, which can’t identify the user with sentences with common words.

24

HSS302 Big Data and Analysis *17 Final Research Paper

On the other hand, The situations that my module can show the performance is during the
conversation. For example, when there is a family talk, my module may listen to the conversation and
do the speech-to-text process to convert into sentences. Then for each sentence, my module can detect

the speaker and support the customized service instantly.

There is a limitation that my module gets low correction rate as more people use. This is because, if
there are more users, keywords could be overlapped and result in the increase of the incorrection rate.
However, if there are the small number of common users may show better performance. For example,
my module can run effectively with the family members because the number of users is 3~5. In
addition, for the family users, there are mom and dad who have different gender, and kids with

different ages and personalities, so they may have distinguishable keywords.

In addition, there is less security issue because all my module utilize is the frequency of each word
token from each sentence. The log-likelihood keyness does not require the relationship between other
words so my module can get the result by simply counting the number of each word token. On the
other hand, the voice recognizer with high technology can cause privacy issues as it saves all the

recorded voice files. This approach can cause some legal problems with privacy issues.

Furthermore, my approach is very simple and do not require lots of costs. This approach can still use
the speech-to-text module (e.g. Watson STT, Google Cloud speech API, Microsoft Bing Speech API)
that is available on the market. We can still use all the available services that companies provide. My
approach would suggest a better approach for the small companies or individual developers aside the

big IT companies.

6. Conclusion

Using the log-likelihood keyness, | could successfully filter out the keywords for each character. This

metric also considers the relative keyness between other words so | could utilize for my speaker

25

HSS302 Big Data and Analysis *17 Final Research Paper

recognizer design. My speaker recognizer showed average 34 % of accuracy but for some characters
(except for Gary) showed considerably high values like 40~45 %. My speaker recognizer can not
support instant voice recognition using sound, but it may perform nicely when there is a conversation
between the static users. Also, it is a very simple method and does not require extra time for
calculation and cost for implementation. My approach is well modularized, so we can still use the
Speech-to-Text modules that major IT companies provide. Plus, there is less security issue than the
accurate voice sound recognition. Therefore, for the small companies or the individual developers, my

approach could be better if they need to implement the functionality using speaker recognizer.

7. Implementation

Mike, your favorite
Oreo is on the table.

amazon¢
"

Figure 27. The example of implication in the family talk.

My speaker recognition module can be used for the speaker Al assistant to support customized service
for multiple users. For example, if there is a family conversation and someone said “Mom, I’'m

hungry”, the Al may recognize that speaker is Mike and guide him to the location of his favorite

26

HSS302 Big Data and Analysis *17 Final Research Paper

cookie (Figure 27). Also, speaker recognizer can make a better conversation between the users. For
example, the Al assistant listens to the family talk and point out whether parents are treating their
children well based on the pedagogy knowledge. So, if there is a problem in the parent’s attitude for
children, the Al assistant can suggest a better way treat with their lovely children to educate them well.
Refer to the paper about the parenting software that directs the parents to play with their children

more educative way using personalized Al service [11].

8. Future Research

8.1. Hypernym Approach

« #FILE:SpongeBob &
- #Vertices 6170 L

+ #Arcs 6369 ¥

= #MaxPath 18 v i &

. #leafN 4757 N REBE o

+ Rank Count Synset ey b W X ,"' AL

- 1 268 person.n.01 “ - ™o, \.’.. "—‘”.l“ &

.2 142 activity.n.01 R o=t e

-3 142 device.n.01 artifact JRY ey S

- 4 126 state.n.02 i Fre e person
« 5 126 artifact.n.01) N JW‘«
-6 118 quality.n.01 . i i g g™
« 7 111 happening.n.01 .

-« 8 105 time_period.n.01 =7 L . " - .1.\

-9 104 condition.n.01 = N :

- 10 9% material.n.01 N g A |

. A

Figure 28. Hypernym network of SpongeBob script for nouns

In order to look at the more abstract concepts between the words and their relationships, we may

apply the hypernym approach. According to Wikipedia, hypernym is defined as below.

In linguistics, a hyponym (from Greek hupd, “under” and 6noma, “name™) is a word or
phrase whose semantic field is included within that of another word, its hyperonym or

hypernym (from Greek hupér, “over” and 6noma, “name”) [12].

27

HSS302 Big Data and Analysis *17 Final Research Paper

NLTK provides hypernym functionality as free. There are several steps to make a network (Figure 28)
using NLTK package: First, you need to tokenize the words and POS tag them. Second, find the
synonym sets for that word matching its POS tag. Third, follow up the hypernym path. Finally, using

the relationships between the word in the hypernym path, you can create the desired network.

However, note that POS tagger did not work well with the spoken corpus (Section 4.2). You need to
make sure that all the sentences are well tagged, and make the hypernym tree. Also, there is need for

calculating the similarity with other characters with a random hypernym network.

8.2. Age Detection using NPS chat corpus

>»> from nltk.corpus import nps_chat

>>> chat room = nps_chat .posts{ 10-13-20s_T06posts. xml)

»»> chatroom[123]

[i". “do". "n't”, “want", ‘hot’, “pics’, ‘of', 'a, “female’, *.°,
1, “can’, “look”, ‘in", "a’, ‘mirror’, ".°]

Figure 29. NPS Chat Corpus

NPS corpus isthe chat corpus that is originally collected by the Naval Postgraduate School and
supported in the NLTK package [13]. It contains more than 10,000 posts with anonymous usernames
for privacy issue. This also categorizes into age groups (teens, 20s, 30s, 40s, and adults chat room) so

we may calculate the keyness to recognize the speaker’s age.

9. References

[1] Blaine Kyllo, “The battle of the home speaker Al assistant is coming to

Canada”, http://www.straight.com/blogra/921981/battle-home-speaker-ai-assistant-coming-

canada (June 8th, 2017)

[2] Wikipedia, “Speaker Recognition”, https://en.wikipedia.org/wiki/Speaker_recognition (June 9th,

2017)

28

http://www.straight.com/blogra/921981/battle-home-speaker-ai-assistant-coming-canada
http://www.straight.com/blogra/921981/battle-home-speaker-ai-assistant-coming-canada
https://en.wikipedia.org/wiki/Speaker_recognition

HSS302 Big Data and Analysis *17 Final Research Paper

[3] Jinho Lee, Inseok Hwang, Thomas S. Hubregtsen, Anne E. Gattiker, and Christopher M. Durham,
“SCI-FII: Speculative Conversational Interface Framework for Incremental Inference on Modularized
Services”, IEEE MDM 2017

[4] Fandom, http://spongebob.wikia.com/wiki/List_of transcripts (June 9th, 2017)

[5] Youtube, “AntConc 3.4.0 Tutorial 10: Keyword List

Tool”, https://youtu.be/tMNM5KDbILLE (June 10th, 2017)

[6] Paul Rayson, “Log-likelihood keyness”, http://ucrel.lancs.ac.uk/llwizard.html (June 10th, 2017)

[7] Rayson P., Berridge D. and Francis B., “Extending the Cochran rule for the comparison of word
frequencies between corpora”, JADT 2004, pp. 926 — 936.
[8] Leonard Richardson, “Beautiful Soup

Documentation”, https://www.crummy.com/software/BeautifulSoup/bs4/doc/ (June 10th, 2017)

[9] Wikipedia, “Stop Words”, https://en.wikipedia.org/wiki/Stop_words (June 10th, 2017)

[10] Node.js Foundation, https://nodejs.org/ (June 10th, 2017)

[11] Inseok Hwang, Chungkuk Yoo, Chanyou Hwang, Dongsun Yim, Youngki Lee, Chulhong Min,
John Kim, Junehwa Song, “TalkBetter: family-driven mobile intervention care for children with
language delay”, CSCW 2014.

[12] Wikipedia, “Hypernym”, https://en.wikipedia.org/wiki/Hyponymy and_hypernymy (June 10th,

2017)
[13] Steven Bird, Ewan Klein and Edward Loper, “Natural Language Processing with

Python”, http://www.nltk.org/book/ch02.html#web-and-chat-text (July 1st, 2015)

29

http://spongebob.wikia.com/wiki/List_of_transcripts
https://youtu.be/tMNm5Kb9LLE
http://ucrel.lancs.ac.uk/llwizard.html
http://www.jadt.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://en.wikipedia.org/wiki/Stop_words
https://nodejs.org/
https://en.wikipedia.org/wiki/Hyponymy_and_hypernymy
http://www.nltk.org/book/ch02.html#web-and-chat-text

	Abstract
	1. Introduction
	2. Challenges and Key Approach
	3. Data Collection
	3.1. Crawling the Transcript List
	3.2. Crawling the Transcript Text
	3.3. Categorization into Each Speaker

	4. Keyword Calculation
	4.1. Keyness Calculation Using AntConc
	4.2. Part-of-Speech Categorization
	4.3. Keyword Result Evaluation
	4.4. Speaker Recognizer Design
	4.5. Speaker Recognizer Evaluation

	5. Discussion
	6. Conclusion
	7. Implementation
	8. Future Research
	8.1. Hypernym Approach
	8.2. Age Detection using NPS chat corpus

	9. References

